

Future of Livestock Production Research

NP215 Workshop - March 15, 2011

MARK BOGGESS, PH.D.

NATIONAL PROGRAM LEADER
FOOD ANIMAL PRODUCTION - NP101

PRIORITIES IN NP101

- Genetics and genomics
 - + Functional genomics
 - + Genomics as a tool for basic research
- Nutrition nutritional efficiency
 - + Basic physiology
 - + Forage efficiency
- Reproductive efficiency
- Animal well-being
- Product quality
- Cooperative Programs
 - + Pasture and Range
 - + Manure Management
 - + Human Nutrition
 - + Crop genetics/genomics
 - + Others: sustainability, water quality, biofuels

FUTURE OF LIVESTOCK PRODUCTION RESEARCH

- Embrace the COMPLEXITY Larger Science More Impact
 - Large complex interdisciplinary problems
 - + Focused on SUSTAINABILITY
 - + Multi-disciplinary team approaches
 - × Example: PRRS Genetic Project, Great Basin Strategy
- Embracing COLLABORATION as a competitive advantage
 - + Across ARS National Programs
 - + With other agencies NIH, NSF, NIFA, others
 - + Land Grant Universities
 - + Industry
 - + International Partners
- Focus on developing LEADERS/LEADERSHIP in NP101
 - + Research community focus
 - + Better communication better reporting larger awareness
 - + Better cooperation and collaboration
 - More accountability

What is Sustainability??

ANIMAL AGRICULTURE SUSTAINABILITY

Three Legged Stool

What does Complexity Look Like??

COMPLEXITY: MATERNAL REPRODUCTION

<-->Secondary interaction - single example

Moving From Genotype to Phenotype

S

National Statistics:

- ✓ National average lactation record:
 - = 23,000 lbs (Holstein)
- ✓ Productivity in 1950: 9,000 lbs
- √ Focused selection
 - ✓ Additive genetic variation
- ✓ Improved management
- ✓ Improved nutrition

So why is this cow so productive?

- ✓ Extraordinary management
- ✓ Excellent phenotype Ex 92
- √ Very good additive genetic effects
- √ What else?

Non-additive genetic effects?

"Environmental" interactions?

What is the biological limit??

Ever-Green-View My 1326-ET

Bred and Owned:

Thomas Kestell, Waldo, WI.

365 day record: 72,170 lbs

Herd average: 36,000 lbs

36 SD from the Phenotypic Mean!!

Genomic evaluation: Very Good

** But not tops in the breed

Boggess 2011

What's in the Black Box??

All of these factors interact to create the complex and dynamic environmental effects that influence the phenotypes of all living organisms.

- Mastering the Environmental Component!
 - + Proteomics study of proteins in living organisms
 - × Integration of genetic and environmental influences
 - × All traits are defined by the action of proteins
 - × Interacts directly with the transcriptome & metabolome
 - × Researchable questions:
 - ★ How many proteins exist in an organism?
 - What are their levels?
 - * Where are they located and why?
 - How do they interact with each other and the environment?
 - * How are they chemically modified naturally and manually?
 - What reactions do they catalyze?

- Mastering the Environmental Component!
 - + Functional Genomics and Animal Breeding
 - Synthesize genetic and proteomic information
 - Focus on component genetic systems for production traits – Strategy:
 - * Dissect complex traits into component genetic pathways
 - × Target genomic work on specific component pathways
 - × Identify genes and resulting RNA products
 - × Qualify/quantify resulting proteins and metabolic products
 - × Associate with specific function in individual genetic pathways
 - * Describe genetic and environmental contributions to parent trait
 - * Address genetic and non-genetic implicating interactions
 - Prescribe selection and management protocols to optimize production traits in specific environments

- Functional Genomics
 - + Continued focus on GENOMICS
 - + Integration of PROTEOMICS
 - + CHALLENGE and OPPORTUNITY is the complexity
 - x Larger science driven by systems biology
 - × More interdisciplinary collaborative research
 - × Extraordinary computing and bioinformatic needs
 - + Potential impact is unlimited for biological systems
 - × Realizing the "promise" of the genome
 - × Personalized medicine, targeted selection, adaptation, etc
 - × Maximize genetic progress for individual traits
 - x Targeted genetic modifications/manipulations to introduce new traits or specific alleles for health, production and adaptability
 - * Ability to "correct" negatively correlated traits
 - * Opportunity to optimize genetic expression in specific environments

- Long road ahead!
- Enormous Opportunity!

- Thank you!
- × Questions/Comments?

